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A catalyst design methodology, utilizing combinatorial synthe-
sis in parallel with chemometric analysis, is presented, which
considers the 3D steric and electrostatic properties of sub-
stituents about a constant core structure.

High-throughput screening has revolutionized drug discovery;1 the
field of catalyst discovery and optimization is poised to undergo an
analogous upheaval. However, due to the large number of possible
compounds that can be synthesized, computational approaches to
guide synthetic efforts are needed. In the area of asymmetric
catalysis, some first steps in this direction have recently been
published, but these have concentrated on building and analysing
the entire catalyst structure.2 An advantage of combinatorial
chemistry is that a small number of reactants can be combined to
form a large number of products. In this report, we describe a
method of constructing a three-dimensional Quantitative Structure-
Selectivity Relationship (QSSR), based around the Comparative
Molecular Field Analysis (CoMFA) methodology,3 that is focused
on the substituents of a common catalytic core. By modelling
substituents rather than the individual catalysts as a whole, very
large reductions in complexity and computational effort can be
achieved. These enhancements in efficiency increase with the size
of the libraries studied, thereby allowing the assessment of larger
catalyst libraries than is possible with the techniques used to
date.

For a test case we examine the asymmetric alkylation shown in
Scheme 1. This process has wide utility in the preparation of a-
amino acid derivatives,4,5 and high levels of enantioselectivity have
been reported using readily-available dihydrocinchonidine-derived
catalysts.6 Recently it has been established that these catalysts can
be generated in situ through sequential N- and O-alkylation of the
parent alkaloid and in this way diversity can be introduced at the
points marked R1 and R2.7 Using this approach, a library of 88
catalysts was synthesized in parallel via combination of the 13
substituents specified in Scheme 2. Substituents 1, 3–7, 12 and 13

could be used to alkylate the quaternary N atom and substituents
1–11 were added to the O atom. Enantioselectivity was assessed by
HPLC. The measured selectivities of the catalysts are presented in
Tables S1 and S2 of the Supplementary Information†. For the
purposes of constructing the QSSR, the enantioselectivities were
converted to the ratio of the amount of S and R enantiomer formed.
The natural log of this value was taken, which is linearly
proportional to DG, and thus suitable for fitting with a linear
regression technique. In a conventional CoMFA, the 3D structure
of each molecule must be built and aligned. However, in this case,
there is a constant molecular core for all the catalysts. As only the
differences in the structures leads to a difference in selectivity, we
consider only the substituents. This has two main benefits: the
number of structures to be built and aligned is reduced from 88 to
13 and we do not include any descriptors related to the core
structure, which could introduce “noise” to the model, masking the
effect of the ligands and reducing the quality of the predictions.
Such an approach has been advocated in the field of drug design,8
but harnessing combinatorial chemistry with substituent-focused
CoMFA has yet to be applied to catalyst design.

3D structures of the substituents given in Scheme 2 were built in
SPARTAN PC Pro version 1.0.8 (Wavefunction, Inc. Irvine, CA).
The open valence where the substituents connect to the core was
capped with an H atom. These structures were optimized using the
MMFF force-field.9 Repeating optimizations with an ab initio
calculation at the BLYP/6-31G* level gave a very similar resulting
QSSR, indicating that a molecular mechanics optimization is

† Electronic supplementary information (ESI) available: predicted and
observed e.e. values for the 88 catalysts in the library; full CoMFA
parameters; aligned molecular coordinates. See http://www.rsc.org/supp-
data/cc/b4/b402378a/

Scheme 1 The phase-transfer catalyzed synthesis of 2-amino-4-bromopent-
4-enoic acid. Diversity is introduced to the dihydrocinchonidine-based
catalyst core at the sites marked R1 and R2.

Scheme 2 The 13 substituents that make up the 88-member catalyst library.
The asterisk shows the point of attachment to either the O or quaternary N
of the cinchona-based core. Atoms marked with a circle were used for the
alignment step of the CoMFA.
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adequate. The structures must then be superposed. We chose a
simple alignment rule: a least squares fit of the three C atoms on the
substituent that were closest to the core of the catalyst, as marked
in Scheme 2. For the substituents attaching to the O atom, the
alignment template was substituent 3; for the N atom, it was
substituent 13. These templates were chosen because the presence
of those substituents resulted in the most selective catalysts, on
average. Each of the aligned substituents was then placed in a
rectilinear lattice, large enough to contain the largest substituent.
An sp3 C probe atom with a single positive charge was placed at
each lattice point and the electrostatic and steric interactions
between the probe and the substituent were computed by means of
the Coulomb and Lennard-Jones equations, respectively. Partial
charges were assigned to the atoms of the substituents using the
Gasteiger-Hückel method10 and the Lennard-Jones parameters
were taken from the TRIPOS force-field.11 Complete CoMFA
parameters are given in Table S3 of the Supporting Information†.

Each catalyst is then represented by the electrostatic and steric
descriptors of its two substituents. These are correlated with the
observed log selectivity by building a regression model using
partial least squares (PLS).12 The dimensionality of the model is
determined by leave-one-out (LOO) cross-validation,13 which also
assesses the quality of the predictions. The discrepancy between the
observed and predicted values is used to define a standard error of
cross-validation, SECV. The number of components corresponding
to the first minimum of SECV is chosen as the final model
dimensionality, which is built using all observations. The quality of
the predictions is measured by the cross-validated coefficient of
determination, q2. For a dataset of this size, a value of q2 > 0.6 is
indicative of a model with good predictive properties. The
conventional coefficient of determination, R2, is measured using
the fitted, rather than cross-validated values. If the value of R2 is
much higher than that of q2, over-fitting of the model must be
suspected, which is likely to result in poor predictions. The PLS
regression and statistics were calculated using an in-house program
written in C++. We constructed a virtual catalyst (“training”)
library using all the substituents in Scheme 2, except substituent 4,
which we removed to create a test set. Principal component analysis
of the catalyst descriptors showed that none of the compounds
made with substituent 4 represents an extrapolation for a regression
model made with the other 12 substituents, so it represents a
reasonable external test of the model, as dictated by statistical best
practice. However, in practical application for molecular design,
the obtained model will be robust to mild extrapolation from the
model, in order to discover catalysts that are more selective than
those included in the training set.

CoMFA was applied to the 70 catalyst training library, resulting
in a five component model with a conventional R2 of 0.82 and a
LOO q2 of 0.72. In terms of %ee, these values represent a root mean
square (RMS) error of fit and cross-validation of 10% and 13%,
respectively. These values indicate that the model has good
predictive qualities and the proximity of the q2 and R2 values gives
confidence that no over-fitting has occurred. Fig. 1 shows cross-
validated versus observed selectivities, converted back into %ee.
To test further that the observed correlation is not due to chance, the
selectivities were scrambled, so that the observed selectivities are
associated with the wrong catalyst substituents. A PLS model was
built and the q2 recorded. 100 of these scramble sets were carried
out. The resultant q2 values (mean: 20.11; standard deviation:
0.08; maximum: 0.14; minimum: 20.31) are clearly inferior to the
results obtained with the real model. The utility of this method as a
tool for screening the selectivity of possible catalysts in silico is
also demonstrated by prediction of the selectivity of the test set. The
introduction of substituent 4, in combination with the other
substituents, allows the synthesis of a further 18 catalysts and we
used the training model to predict their selectivity. Comparing the
predicted and experimentally observed selectivities, we obtained an
external q2, Q2

X = 0.69, corresponding to a %ee RMS error of

prediction of 13%. These predictions, comparable to the cross-
validated results, are also plotted in Fig. 1 (see also Table S2 in the
Supplementary Information†).

To summarize, good 3D-QSSR models can be created for
catalysts with a constant core, by considering only the substituents.
We built an accurate model for 70 catalysts (based on only 12
structures), which was used to predict the selectivity of 18 new
catalysts by the introduction of only one new substituent to the
library. The versatility of the cinchonidine system augurs well for
the applicability of this technique to other reaction mechanisms. In
general, the method shows promise for use with asymmetric
catalysis studies, particularly when combined with other techniques
from chemoinformatics (e.g. statistical design and database
searching).
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Fig. 1 Plots of the predicted enantiomeric excesses of the catalysts against
the observed experimental values. Diamonds represent the predictions of
the 70-member training library using substituents 1–3 and 5–13. The circles
show the predicted selectivity of the catalysts formed by adding substituent
4 to the library at the R1 and R2 position.
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